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Why Causal Inference?

Correlation is not causation: simple correlations can lead to
misguided policies

Among many different options, important to choose the most
effective intervention

Accurate cost-benefit analysis
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Causality Frameworks

Rubin Causal Model (Imbens & Rubin, 2015)

Angrist & Pischke (2009)

Pearl (2000)
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RCM (1980): Set Up

Rubin’s potential outcome framework (1974):

Given a set of N units, indexed by i = 1, ..., N . Let Wi be the binary
indicator of the reception of the treatment:

Wi ∈ {0, 1}

Given this notation and SUTVA we can postulate the existence of a
pair of potential outcomes for each unit:

Y obsi = Yi(Wi) =

{
Yi(0) if Wi = 0

Yi(1) if Wi = 1

We can define the Causal Effect as a simple difference between the
potential outcome under treatment and under control:

τi = Yi(1)− Yi(0)
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RCM (1974): Science World

Imagine that we want to assess the effect (causal effect) of a job
training (treatment) on a pool of students (units)

Education Treated No job training Job training Treatment effect
ID Xi Wi Yi(0) Yi(1) τi = Yi(1)− Yi(0)

1 High school 0 0 1 1
2 High school 1 0 1 1
3 High school 1 1 1 0
4 College 1 1 1 0
5 College 0 1 1 0
6 College 0 0 1 1

Average Treatment Effect (ATE):

τ̄ = Ȳ (1)− Ȳ (0)

= 1− 0.5

= 0.5
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RCM (1974): Real World

Education Treated No job training Job training Treatment effect
ID Xi Wi Yi(0) Yi(1) τi = Yi(1)− Yi(0)

1 High school 0 0 ? ?
2 High school 1 ? 1 ?
3 High school 1 ? 1 ?
4 College 1 ? 1 ?
5 College 0 1 ? ?
6 College 0 0 ? ?

Average Treatment Effect:

32% bigger: why this bias?

τ̄ = 0.66
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Selection Bias (intuition)

People do not randomly select into various programs which we would
like to evaluate

Higher treatment rate & higher treatment effects: Wi ⊥6⊥ Yi(0), Yi(1)
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Selection Bias (mathematical intuition)

As noted above, simply comparing those who are and are not treated
may provide a misleading estimate of a treatment effect

This problem can be efficiently described by using mathematical
expectation notation to denote population averages:

τ̄ = E[Yi(1)|Wi = 1]− E[Yi(0)|Wi = 0]

= E[Yi(1)− Yi(0)|Wi = 1]︸ ︷︷ ︸
Average Treatment Effect on the Treated

+
[
E[Yi(0)|Wi = 1]− E[Yi(0)|Wi = 0]

]︸ ︷︷ ︸
Selection bias

Thus, the naive contrast can be written as the sum of two
components, ATET, plus Selection Bias

Average earnings of non-trainees, E[Yi(0)|Wi = 0], may not be a
good standing for the earnings of trainees had they not been trained,
E[Yi(0)|Wi = 1]
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Possible solutions

The problem of selection bias motivates the use of:
1 Random assignment (ex-ante) → experimental set-up

2 Unconfoundedness (ex-post) → observational studies

3 Instrumental variable (ex-post) → observational studies
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Random Assignment

Random assignment ensures that the potential earnings of trainees
had they not been trained are well-represented by the randomly
selected control group

Formally, when Wi is randomly assigned, then:

E[Yi|Wi = 1]−E[Yi|Wi = 0] = [Yi(1)−Yi(0)|Wi = 1] = E[Yi(1)−Yi(0)]

Replacing E[Yi|Wi = 1] and E[Yi|Wi = 0] with the corresponding
sample analog provides a consistent estimate of ATE
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Unconfoundedness (or CIA)

The unconfoundedness assumption states that conditional on
observed characteristics, the selection bias disappears

Formally, we overcome the problem that we have seen at slide 9,
because: Wi ⊥⊥ Yi(0), Yi(1)|Xi

This holds true even if conditioning just on:
e(x) = P (W = 1|Xi = x)

Given unconfoundedness, comparison of average effects of job
training have a causal interpretation:

τ̄ = E[Yi(1)|Wi = 1, Xi]−E[Yi(0)|Wi = 0, Xi] = E[Yi(1)−Yi(0)|Xi]

This can be generalized to the case of a continuous treatment
variable (i.e effects of education on employment): si ⊥⊥ Ysi |Xi

Conditional on Xi, what is the average causal effect of a one-year
increase in collage attendance?

E[Yi|si = s,Xi]− E[Yi|si = s− 1, Xi] = E[fi(s)− fi(s− 1)|Xi]
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Using CART to estimate heterogeneous causal effect

Machine Learning and Causality
Using machine learning to estimate

heterogeneous causal effect
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Using CART to estimate heterogeneous causal effect

Machine Learning and Causality

Econometrics/ Statistics/ Social Science

Formal theory of causality

Potential outcomes methods (Rubin) maps onto economic approaches

Well-developed and widely used tools for estimation and inference of
causal effect in experimental and observational studies

Used by social science, policy-makers, development organizations,
medicine, business, experimentation

Weaknesses

Non-parametric approaches fail with many covariates
Model selection unprincipled
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Using CART to estimate heterogeneous causal effect

Motivations

Experiments and Data-Mining
Concerns about ex-post “data-mining”

In medicine, scholars are required to pre-specify analysis plan (similar
in economic field experiments)

How is it possible to deal with sets of treatment effects among
subsets of the entire population?

Estimate of treatment effect heterogeneity needed for optimal
decision-making

Definition 1 (Athey and Imbens, 2015; 2016)

1 Estimating heterogeneity by features in causal effects in experimental or
observational studies

2 Conduct inference about the magnitude of the differences in the
treatment effects across subsets of the population
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Using CART to estimate heterogeneous causal effect

Causal Inference Framework

Causal inference in observational studies:

As we saw previously, assuming unconfoundedness to hold, we can
treat observations as having come from a randomized experiment

Therefore we can define the conditional average treatment effect
(CATE) as follows:

τ(x) = E[Yi(1)− Yi(0)|Xi = x]

The population average treatment effect then is:

τp = E[Yi(1)− Yi(0)] = E[τ(Xi)]
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Using CART to estimate heterogeneous causal effect

Why is CATE important?

There are a variety of reasons that researchers wish to conduct
estimation and inference on τ(x):

1 It my be used to assign future units to their optimal treatment (in
presence of different levels of the treatment):

W opt
i = max τ(Xi)

2 If we don’t pre-specify the sub-populations it can be the case that
the overall effect is negative, but it can be positive on
subpopulations, then:

WPTE
i = 1τ(Xi)≥0

e.g.: treatment is a drug → prescribe it just to those who benefit
from it
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Using CART to estimate heterogeneous causal effect

Using Trees to Estimate Causal Effects

Athey and Imbens (2015; 2016) propose 3 different approaches:

Approach I: Analyze two groups

separately:

Estimate µ̂(1, x) using
dataset where Wi=1
Estimate µ̂(0, x) using
dataset where Wi=0
Preform within group
cross-validation to choose
tuning parameters
Predict τ̂ = µ̂(1, x)− µ̂(0, x)

Approach II: Estimate µ(w, x) using

just one tree:

Estimate µ̂(1, x) and µ̂(0, x)
using just one tree
Preform within tree
cross-validation to choose
tuning parameters
Predict τ̂ = µ̂(1, x)− µ̂(0, x)
Estimate is zero for x where
tree does not split on w
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Using CART to estimate heterogeneous causal effect

The CATE Transformation of the Outcome

The authors’ goal is to develop an algorithm that generally leads to
an accurate approximation of τ̂ the Conditional Average Treatment
Effect.

1 Ideally we would measure the quality of the approximation in terms
of goodness of fit using the MSE:

Qinfeas =
1

N

N∑
i=1

(Yi(1)− Yi(0)− τ̂(Xi))
2

2 We can address this problem of infeasibiliy by transforming the
outcome using the treatment indicator Wi and e(X):

Y ∗
i = Y obsi · Wi − e(Xi)

(1− e(Xi)) · e(Xi)

3 Then:
E[Y ∗

i |XI = x] = τ(x)
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Using CART to estimate heterogeneous causal effect

How to estimate the In-Sample Goodness of fit?

The ideal goodness of fit measure would be:

Qinfeas(τ̂) = E[(τi − τ̂(Xi))
2].

A useful proxy that can be used for the goodness of fit measure is:

E[τ2i |Xi ∈ Sj ] =
1

N

∑
i

τ̂(xi)
2.

This leads to our In-sample goodness of fit function:

Qis = − 1

N

∑
i

τ̂(xi)
2.
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Using CART to estimate heterogeneous causal effect

Transformed Outcome Tree Model

Approach 3:

1 Model and Estimation
Model Type: Tree structure
Estimator τ̂TOTi : sample average treatment effect within leaf

2 Criterion function (for fixed tuning parameter λ)
In-sample Goodness-of-fit function:

Qis = −MSE = −
1

N

N∑
i=1

(τ̂TOTi )2

Structure and use of criterion:

Qcrit = Qis − λ× leaves

Select member of set of candidate estimators that maximizes Qcrit,
given λ

3 Cross-validation approach
Out-of-Sample Goodness-of-fit function:

Qoos = −MSE = −
1

N

N∑
i=1

(τ̂TOTi − Y ∗
i )

2

Approach: select tuning parameter λ with highest Qos
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Using CART to estimate heterogeneous causal effect

Critique to the TOT approach

Transformation of the Outcome in a randomized set-up:

Y ∗i = Y obsi · Wi − p
(1− p) · p

=


1

p
· Y obsi if Wi = 1

− 1

1− p
· Y obsi if Wi = 0

Within a leaf the sample average of Y ∗i is not the most efficient
estimator of treatment effect

The proportion of treated units within the leaf is not the same as
the overall sample proportion

We use a weighted estimator similar to the Hirano, Imbens and
Ridder (2003) estimator
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Using CART to estimate heterogeneous causal effect

Causal Tree Approach

In details the Treatment Effect in a generic leaf Xj is:

τCT (Xi) =

∑
j:Xj∈Xj

Y obsi · Wi

ê(Xi)∑
j:Xj∈Xj

Wi

ê(Xi)

−
∑
j:Xj∈Xj

Y obsi · (1−Wi)
(1−ê(Xi))∑

j:Xj∈Xj

(1−Wi)
(1−ê(Xi))

This estimator is a consistent estimator of:

τXj
= E[Yi(1)− Yi(0)|Xi ∈ Xj ]

The variance can be estimated the Neyman estimator:

V̂Neyman =
s2t
Nt

+
s2c
Nc

These two quantities can be estimated as:

ste,2t,j =
1

Nt − 1

∑
i:Wi=1

(Yi(1)− Y
obs
t )2 =

1

Nt − 1

∑
i:Wi=1

(Yi − Y
obs
t )2

ste,2c,j =
1

Nc − 1

∑
i:Wi=0

(Yi(0)− Y
obs
c )2 =

1

Nc − 1

∑
i:Wi=0

(Yi − Y
obs
c )2
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Using CART to estimate heterogeneous causal effect

Attractive features of Causal trees

1 Can easily separate tree construction from treatment effect
estimation

2 Tree constructed on training sample is independent of sampling
variation in the test sample

3 Holding tree from training sample fixed, can use standard methods
to conduct inference within each leaf of the tree on test sample

4 Can use any valid method for treatment effect estimation, not just
the methods used in training

5 Simulations run by the authors show that the Causal Tree Algorithm
outperforms the ST, TT and TOT approaches
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Using CART to estimate heterogeneous causal effect

Case Study

Figure: Bargagli-Stoffi & Gnecco (2020)
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Using causal forests to estimate heterogeneous causal effects

Causal Forests

An individual tree can be noisy as we saw in the last lecture → instead,
fit a causal forest

1 Draw a sample of size s
2 Split into a D and I sample
3 Grow a tree on D
4 Estimate the effects on I

Repeat many times

Pros:

1 Consistency for true t(x)
2 Asymptotic normality
3 Asymptotic variance is estimable

Cons:

1 Require sample splitting
2 Large samples for asymptotic properties
3 Not interpretable
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Using causal forests to estimate heterogeneous causal effects

Bayesian Causal Forest (BCF)

BCF were introduced by Hahn et al. (2020)

BCF is a causal version of BART that:
has a similar priors of BART (higher probability of smaller trees and
stumps, different hyper-priors to scale the leaves distribution of τi)
accounts for measure confounding through the inclusion of the propensity
score in the model

Model parametrization:

Direct effects of xi and π̂(xi) on yi Heterogeneous causal effects

yi = µ(xi, π̂(xi)) + τ(xi)wi + εi
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Using causal forests to estimate heterogeneous causal effects

Causal rules and interpretability

In a causal scenario, interpretability can be defined as the ability of the algorithm
to identify the subgroups where the effects are heterogeneous

Decision rules are simple if-then statements regarding several conditions

Rule-based learning improves interpretability

Causal Rule Ensemble (CRE) algorithm (Lee, Bargagli-Stoffi and Dominici, 2020)
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Using causal forests to estimate heterogeneous causal effects

Intuition on CRE

Intuition on the CRE algorithm (5 steps):
1 Divide the overall sample into a discovery and estimation sample
2 Estimate the unit-level treatment effect τd(x) (where Xi = x)
3 On the discovery build a series of causal rules by regressing τd(x) on Xi using

random forest (Breiman, 2001) and gradient trees (Friedman, 2001)

4 Select the most important rules using stability selection (Meinshausen and Bühlmann,
2010)

5 On the estimation sample estimate the treatment effects by regressing the estimated
unit level treatment effects τe(x) on the selected rules
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Using causal forests to estimate heterogeneous causal effects

Conclusions

1 The main problem to face is the absence of a ground truth when we
deal with causal inference problems

2 The approaches developed are strongly data-driven: selection of
subpopulation is optimized by the algorithm

3 Work well with randomized experiments and some techniques (i.e.,
BCF, CRE) control for potential confounding bias

4 The approaches are tailored for applications where:
1 there may be many attribute relative to the number of units

observed (fat-data)
2 the functional form of the relationship between treatment effects and

the attributes of units ins not known

31 / 32



Data Science Lab - 5

Machine Learning and Causality

Using causal forests to estimate heterogeneous causal effects

Further Readings

S.Athey, G.Imbens Machine learning methods for estimating
heterogeneous causal effects, 2015

S.Athey, S.Wager Estimation and Inference of Heterogeneous
Treatment Effects using Random Forest, 2015

L. Breiman. Random Forest, Machine learning, 24:123-140, 2001

L. Breiman, J.H. Olshen, C.J. Stone. Classification and Regression
Trees, CRC press, 1984

T.J. Hastie, R.J. Tibshirani, J.H. Friedman. The Elements of
Statistical Learning. Speringer, New York, 2009

K.P. Murphy. Machine Learning. A Probabilistic Perspective. The
MIT Press, Cambridge, Massachusetts, 2012

K. Lee, F. J. Bargagli-Stoffi, F. Dominici, Causal Rule Ensemble:
Interpretable Inference of Heterogeneous Treatment Effects,
forthcoming, 2020
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