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Linear regression

Linear regression model of the form:

y = β0 + xTβ + ε (1)

where x ∈ Rp is an input vector of predictors, β0 ∈ R is a constant, β ∈ Rp is a

parameter vector, ε ∈ R is an error term, and y ∈ R is the output of the model

Both x and y are measured, whereas β0, β and ε are unknown

To estimate β0 and β, one uses a finite set of input-output pairs
zi = (xi, yi), i = 1, . . . , N , generated according to the model (1),
i.e., each one is of the form

yi = β0 + xTi β + εi (2)

Often, one makes additional assumptions on the error terms εi:
they are independent,
they are identically distributed according to a zero-mean Gaussian
distribution: ε ∼ N (0, σ2)
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Estimating the parameters

The most common ways to estimate β0 and β are:

1 Through the Ordinary Least Squares (OLS) method (squared-error
loss minimization):

minimizeβ0∈R,β∈Rp
1

2N

N∑
i=1

(
yi − β0 − xTi βi

)2
(3)

2 Through the Maximum Likelihood Estimation (MLE):

maximizeβ0∈R,β∈Rp

N∏
i=1

1√
2πσ2

exp

{
−
(
yi − β0 − xTi β

)2
2σ2

}
(4)

3 Through a GMM estimator arising from the moment condition:

E
[
xi(yi − β0 − xtiβ)

]
= 0 (5)
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Drawbacks of OLS

The OLS method has several drawbacks, especially in the case of
regression problems with a large number p of predictors:

if p > N , then problem (3) admits an infinite number of optimal
solutions: hence, it is obviously not possible to obtain a good
estimate of β

usually, an optimal solution β◦ to problem (3) is not sparse: i.e., all
or nearly all its components are different from zero

a sparse optimal solution would have better interpretability: i.e., it
would highlight which predictors are important to estimate the
output
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The LASSO estimator

To solve the problems described in the previous slide, the LASSO
estimator has been proposed by Robert Tibshirani in 1996

Its optimization problem is similar to the one associated with the
OLS method

Additionally, it includes a constraint on the l1-norm of the parameter
vector, which often enforces sparsity of the optimal solution

LASSO: Least Absolute Shrinkage and Selection Operator

The term LASSO is inspired also by the “lasso”: a long rope with a
noose at one end, used to catch horses and cattle
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The LASSO estimator: constrained optimization
problem

For t > 0, the constrained optimization problem solved by the
LASSO is

minimizeβ0∈R,β∈Rp
1

2N

N∑
i=1

(
yi − β0 − xTi β

)2
subject to ‖β‖1 ≤ t (6)

where ‖β‖1 =
∑p
j=1 |βj | (here, the β0 term is not included)

The constraint ‖β‖1 ≤ t is a “budget constraint”, which limits how
well one can fit the data.

The parameter t has to be tuned using an external procedure (e.g.,
cross-validation)

To give a-priori the same importance to each predictor, it is common
to standardize them, so that each predictor has unit variance
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Logit-LASSO

LASSO is optimized to deal with continuous and discrete variables

What if you have binary outcome?

Solution: LOGIT-LASSO

minimizeβ0∈R,β∈Rp
1

2N

∑N
i=1

(
yi(β0 + xTi β)− log(1 + e(β0+xT

i β))
)2

subject to ‖β‖1 ≤ t (7)
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Ridge regression

An alternative to the LASSO is ridge regression; in this case, the
l1-norm constraint is replaced by an l2-norm constraint:

minimizeβ0∈R,β∈Rp

1

2N

N∑
i=1

(
yi − β0 − xTi β

)2
subject to ‖β‖2 ≤ t (8)
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Comparison between LASSO and ridge regression

The LASSO has the advantage over ridge regression that it usually
provides a sparse optimal solution, i.e., one with only a few
components different from zero

This is due to geometric reasons: more precisely, to the different
shapes of the sets ‖β‖1 ≤ t and ‖β‖2 ≤ t

For the 2-dimensional case (p = 2), an optimal solution is obtained
the first time a level curve of the quadratic objective function
intersects the set ‖β‖1 ≤ t (LASSO) or ‖β‖2 ≤ t (ridge regression)

In the first case, such an intersection is more likely to occur at a
vertex, where one of the components is zero
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Model selection and Post-LASSO

LASSO is also an important tool to perform model selection (i.e.,
the problem of selecting a “good” subset of the set of p available
predictors)

Compared to other methods, it incorporates model selection inside
its optimization problem

the opposite approach is to consider different (either “nested” or
“non-nested”) models with different parameterizations, then to
select the “best among the best” such models through an external
procedure, such as the classical Akaike’s Information Criterion (AIC),
which penalizes - the performance being the same - models with
large “model complexity” with respect to models with small “model
complexity”
in the LASSO, the role of “model complexity” is played by the
l1-norm regularization term

After selecting the predictors through the LASSO, it is common to
apply the OLS method to the subset of predictors just selected
(Post-LASSO)
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Numerical comparison among OLS, LASSO, and
Post-LASSO

Comparison of various regression methods to model the conditional

expectation of the log-wage y given the education level z, using an

overcomplete dictionary of polynomial approximating functions x(j)(z)

depending on the number of years of schooling (example taken from

(Belloni and Chernozhukov, 2011)):

Conventional method: OLS

s=number of predictors in the selected model (p for the conventional

method, much smaller than p for the LASSO and the Post LASSO)

The conclusion is that - the number of selected regressors being the same

- LASSO can perform much better than OLS, and Post LASSO even

better!
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Stability Selection

LASSO and RIDGE are potentially unstable to variability in the
underlying training sample

Stability selection (Meinshausen and Bühlmann, 2010) provides an
algorithm for performing model selection while controlling the
number of false discoveries

Two main advantages over competing approaches:
1 It works in the high-dimensional data setting (p� n)
2 It provides control on the family-wise error rate in the finite sample

setting, which is more practical than an asymptotic guarantee.
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Stability Selection: the Algorithm in a Nutshell

Input: dataset z = z1, ..., zn and a regularization parameter λ and
returns a selection set Sλ

1 Define a candidate set of regularization parameters Λ and a
subsample number k

2 For each value of λ ∈ Λ, do:
Subsample from z to generate a smaller dataset of size n/2, given by
z(b)
Run the selection algorithm on z(b) with parameter λ to obtain a

selection set Ŝλ
(b)

3 Given the selection sets from each subsample, calculate the empirical
selection probability for each model component:

π̂λk = P{k ∈ Ŝλ} =
1

B

B∑
b=1

I{k ∈ Ŝλ(b)} (9)

Output: given the selection probabilities for each component and
for each value of λ, construct the stable set according to:

Ŝstable = {k : maxλ∈Λπ̂
λ
k ≥ πthr} (10)
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Using LASSO to select instruments

Application
Using LASSO to select instruments
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Using LASSO to select instruments

Instrumental Variable intuition

Instrumental variable regression is a very powerful tool in causal
inference since it gives the researcher the possibility to solve at the
same time 3 issues:

1 Omitted Variable Bias
2 Simultaneous equation models (aka reverse causality)
3 Measurement error

The idea behind IV

W

observed

YZ

instrument

A

unobserved

IV regression can isolate the causal effect of W by means of an
instrument Z, which detect movement in W uncorrelated to D
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Using LASSO to select instruments

Formalization and definitions

Yi = βTXi + ρs+ ηi where ηi = ATi γ + εi and E[ηi] = ATi γ

si = XT
i π10 + π11Zi + ε1i is the First Stage

Yi = XT
i π20 + π21Zi + ε2i is the Reduced Form

si and Yi are the endogenous variables

Xi and Zi are the exogenous variables (Xi are the exogenous
covariates)

From the first stage and the reduced form we have:

ρ =
π21

π11
=
Cov(Yi, z̃i)

Cov(si, z̃i)
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Using LASSO to select instruments

Angrist and Krueger (1991): on economic return to
education

Most states want student to enter school in the calendar year in
which they turn 6

Group A: children born in the 4th quarter enter school shortly before
they turn 6

Group B: children born in the 1st quarter enter school at around age
6.5

Law requires students to remain in school until their 16th birthday

Therefore, A and B will be in different grades, or have a different
length of schooling, when the turn 16
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Using LASSO to select instruments

First Stage

Figure: Average education by quarter of birth. Men born earlier in the
calendar year tend to have lower average schooling levels
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Using LASSO to select instruments

Reduced Form

Figure: Average earning by quarter of birth. Man born in earlier quarters
earn less, on average, than those born later in the year
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Using LASSO to select instruments

Two-Stage Least Squares

You can obtain the reduced form by substituting the 1st stage into
the causal relationship

Yi = αTXi + ρ
[
Xiπ10 + π11zi + ε1i

]
+ ηi

= XT
i

[
α+ ρπ10

]
+ ρπ11zi +

[
ρε1i + ηi

]
= XT

i π20 + π21zi + ε2i

Note that this shows again ρ = π21

π11

As we usually work with samples, we compute

ŝi = XT
i π̂10 + π̂11zi: first-stage fitted values

Yi = αTXi + ρŝi +
[
ηi + ρ(si − ŝi)

]
: second-stage equation

The resulting estimator is consistent for ρ because both Xi and ŝi
are uncorrelated with ηi as well as with (si − ŝi)
Intuition: 2SLS retains only the variation in si that is generated bt
exogenous quasi-experimental variation
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Using LASSO to select instruments

Multiple Instrument Case

Say that we have three instruments z1i, z2i, z3i e.g., dummies for
quarter of birth

The 1st stage is then si = XT
i π10 + π11z1i + π12z2i + π31z3i + ε1i

The 2nd stage is the same, though ŝi is now from the above

Angrist and Krueger (1991) also include interaction terms

si = XT
i π10 + π11z1i + π12z2i + π13z3i

+
∑
j

(
Bijz1i

)
k1j +

∑
j

(
Bijz2i

)
k2j +

∑
j

(
Bijz3i

)
k3j + ε1i

where Bij is a dummy for year of birth, for j = 1931− 39
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Using LASSO to select instruments

Using multiple instruments
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Using LASSO to select instruments

Problems with (multiple) instruments

Bound, Jaeger, and Baker (1995) note, that a possible problem with
IV is caused by the selection of weak instruments

Namely, weak instruments are poor predictors of the endogenous
question predictor in the first-stage equation

Weak instrument lead to bias and very large variance in the IV
causal estimands

Moreover,the weak instrument bias tends to get worse as we add
more (weak instruments)

In other words, the bias gets worse when there are many
over-identifying restrictions (many instruments compared to
endogenous regressors)

Selection problem

We need to select, among the different possible instruments, the ones
that have the higher predictive power in the First Stage regression
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Using LASSO to select instruments

Possible solution: LASSO regression

Example taken from (Belloni and Chernozhukov, 2011) using data
from (Angrist and Krueger, 1991)

Model of the form

yi = θ0 + xiθ1 + cTi γ + ui , E {ui|ci, zi} = 0 (11)

xi = zTi β + cTi δ + vi , E {vi|ci, zi} = 0 (12)

where, for each person i, yi indicates wage, xi denotes education, ci
indicates a vector of control variables, and zi denotes a vector of
instrumental variables that affect education but do not directly
affect the wage

ui and vi are error terms

In the specific problem, x and u are correlated, hence the OLS
estimate of θ1 from equation (11) - which does not use the vector of
instrumental variables - is biased
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Using LASSO to select instruments

Application of the LASSO to instrumental variable
selection

The vector of instrumental variables can be used to obtain an
unbiased estimate of θ1, e.g., through the following two-stage
regression procedure:

first stage: regression of the xi’s from equation (12), using the ci’s
and the zi’s
second stage: regression of the yi’s from equation (11), using the
ci’s and the estimates of the xi’s obtained in the first stage

In this context, the LASSO can be used to do instrumental variable
selection, possibly improving the estimate of θ1 (see the numerical
results in (Belloni and Chernozhukov, 2011))

A similar application of LASSO - this time in control variable
selection - is done in (Belloni et al., 2014), using data from
(Acemoglu et al. 2001), to do control variable selection when
estimating the effect of institutions on output, using mortality rates
for early European settlers as an instrument for institution quality
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Using LASSO to select instruments
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